
The DNA Learning Center’s effort to develop lab experiments for high school and col-
leges dates to 1985, when Dave Micklos teamed with Greg Freyer to develop a
sequence of experiments to make and analyze a recombinant DNA molecule. The ini-
tial testing was done in Rich Roberts’ lab, well before he won the Nobel Prize, and
incorporated key insights on inserting DNA into bacteria from the dean of transfor-
mation, Doug Hanahan. The lab sequence was initially a slim lab manual called
“Recombinant DNA for Beginners,” whose title was derived from the Graham Nash
album “Songs for Beginners.” It expressed perfectly our ideal of making complicated
gene technology accessible to novices.
Within a year, we were training teachers across the country on summer tours of

one, then two, Vector vans. These were customized Ford Econoline vans that packed
enough equipment, reagents, and supplies to convert any general science lab into a
molecular genetics lab. Along the way, we developed a complementary minitext that
presented the concepts behind the labs, as well as extensions of recombinant DNA
technology in basic and applied research. The much expanded work was formally
published in 1991 as the Cold Spring Harbor Laboratory Press book DNA Science.
That name, which Jim Watson threw out over lunch one day, seemed to capture the
excitement of a new science based on the ability to manipulate and understand the
DNA molecule.

DNA Science, now in its second edition, has sold more than 90,000 copies and is
credited with helping to catalyze the movement to bring hands-on experiments with
DNA into high school and beginning college classrooms. Two experiments found their
way into the Advanced Placement biology curriculum, giving these experiments a
nationwide audience. Stand-alone kits, developed with Carolina Biological Supply
Company, reach well over 100,000 students per year.
The experiments in DNA Science are based exclusively on bacterial genetic sys-

tems. Now, Genome Science aims to take students to a higher level of biological and
technological integration—to study the function of eukaryotic genes and genomes.
Nineteen laboratories focus on four revolutionary technologies—polymerase chain
reaction, DNA sequencing, RNA interference (RNAi), and bioinformatics—across
three eukaryotic systems: humans, plants, and Caenorhabditis elegans. All labs stress
the modern synthesis of molecular biology and computation, integrating in vitro
experimentation with in silico bioinformatics. In addition to well-tested biochemical
methods, Genome Science introduces DNA Subway, an intuitive bioinformatics plat-
form that makes easy work of gene and genome analysis.
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The four major techonologies are organized into stand-alone chapters with
extensive text introductions that place related labs into a common historical and con-
ceptual framework. This modular approach provides options to develop new courses
or to integrate labs into existing courses or student research. We especially hope that
these protocols will help educators to extend research to classroom settings and dis-
tribute experiments in which multiple classes analyze and contribute to common data
sets. DNA barcoding is especially amenable to “campaigns” in which many students
contribute to understanding diversity within a common biogeographical unit. 

Genome Science borrows many user-friendly features from its predecessor, includ-
ing flow charts, marginal notes, reagent recipes, and extensive instructor information.
To ease implementation, most labs are available as ready-to-use kits from Carolina
Biological Supply Company. In addition, like its predecessor, Genome Science aims to
help beginners use modern tools to explore the unseen world of genes and genomes.
In contemplating the cosmos in 1927, the great mathematical geneticist J.B.S.

Haldane famously said, “My own suspicion is that the universe is not only queerer
than we suppose, but queerer than we can suppose.” Had he been alive today, Haldane
would almost certainly have the same suspicion about the genomes of higher organ-
isms. In this sense, genome scientists are the new cosmologists of biology, uncovering
the strange and beautiful structure of the genetic material that runs through all life.
Happy explorations.

DAVID MICKLOS
BRUCE NASH
UWE HILGERT

Cold Spring Harbor, New York
March 2012
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INTRODUCTION

A human is a complicated organism, and most molecular genetic experiments would
be either technically difficult or unethical to perform on human subjects. For these
reasons, biologists often use simpler “model” organisms that are easy to culture and
manipulate in the laboratory. Despite obvious physical differences, model organisms
and humans share many key biochemical and physiological functions that have been
conserved (preserved) during evolution. The nematode worm C. elegans is one of sev-
eral organisms commonly studied by biological researchers today.

C. elegans is a microscopic roundworm. Although some roundworms are para-
sitic, C. elegans is a free-living worm that feeds on soil bacteria. These worms grow
quickly, developing from embryo to adult in 3 d. C. elegans is a simple animal with
only ~1000 cells, and scientists know exactly how each of those cells develops from the
fertilized egg. C. elegans was the first multicellular organism to have its entire genome
sequenced, with the surprising finding that 40% of its genes have human matches.
Mating animals, isolating genes, and introducing foreign DNA are much easier in C.
elegans than in more complicated animals. All of these features make C. elegans a great
model for understanding how cells divide, develop, and take on specialized tasks in
higher (eukaryotic) organisms. Recently, the discovery that any of the organism’s
genes can be “silenced” using a technique called RNA interference (RNAi) has made
C. elegans an ideal organism to quickly determine the functions of genes identified by
sequencing the genome.

LABORATORY

4.1 Culturing and Observing C. elegans

� O B J E C T I V E S

This laboratory demonstrates several important concepts of modern biology. During
the course of this laboratory, you will

• Learn about the use of model organisms in research.

• Observe development and identify specific developmental stages in Caenorhabditis
elegans.

• Explore the relationship between genotype and phenotype.

In addition, this laboratory utilizes several experimental methods in modern biological
research. You will

• Use sterile technique to isolate and grow pure cultures of bacteria and C. elegans.

• Use antibiotic selection to maintain a recombinant bacterial culture.

• Use dissecting microscopes to observe and analyze cultures of bacteria and C. ele-
gans.

Sydney Brenner won a
Nobel prize for establishing
C. elegans as a model
organism. 
(Photo courtesy of Matthew
Meselson.)
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This laboratory introduces C. elegans and describes methods required for its cul-
ture; these techniques and familiarity with C. elegans are prerequisites for RNAi exper-
iments. Included are techniques for growing Escherichia coli cells and preparing plates
to feed C. elegans. The most common strain of bacteria used to feed worms is the E.
coli strain OP50, which is grown on standard LB plates or in LB broth. For RNAi
experiments, specialized strains of bacteria, each containing a plasmid that expresses
a gene-specific double-stranded RNA (dsRNA), are fed to worms to trigger gene
silencing. 

A technique for spreading bacteria onto standard plates to isolate single cells from
one another is described. Each cell then reproduces to form a visible colony composed
of genetically identical clones. Small-scale suspension cultures of E. coli are then
grown by overnight incubation using cells derived from a single colony, which mini-
mizes the chance of using a cell mass contaminated with a foreign microorganism.
These overnight cultures are used to inoculate, or seed, specialized “NGM (nematode
growth medium)-lite” agar plates on which the worms are grown. E. coli OP50 is seed-
ed to NGM-lite plates. In addition, RNAi strains expressing dsRNA corresponding to
three genes, dpy-11, bli-1, and unc-22, are seeded to NGM-lite plates with ampicillin
and isopropyl-β-D-thiogalactopyranoside (IPTG). Ampicillin selects for bacteria car-
rying the RNAi plasmid, and IPTG triggers dsRNA expression from the plasmid in the
bacteria. In Laboratory 4.2, the function of these three genes is assayed when RNAi is
induced by culturing worms on these plates.

Two methods to propagate worms are described. Worms growing on an NGM-lite
plate are transferred by cutting out a section of the medium and placing it on the sur-
face of a new plate. This “chunking” method is a rapid way to move multiple worms
from a plate where the E. coli food source has been consumed to a plate with a fresh
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Embryonic development in C. elegans. This series of images shows
different stages during embryonic development. Fertilization to
hatching takes just 14 h.
(Reprinted, with permission, from O’Rourke M, Bowerman B. 2005. Nature
434: 444–445; ©Macmillan.)
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lawn of bacteria. Individual worms can be transferred to fresh plates using the flat-
tened tip of a platinum wire; this technique for “picking” individual worms is the
starting point for genetic crosses and RNAi experiments.

Finally, wild-type C. elegans hermaphrodites are observed using microscopy, and
their morphology, behavior, and life cycle are analyzed. Abnormal morphology and
behavior of mutant worms are also observed.
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Experiment Day Time Activity

Stage A: Culturing E. coli

2 or more d 90 min Prelab: Prepare LB, LB/amp, NGM-lite, and NGM-lite/amp
before Part I + IPTG plates.

1–2 d 30 min Prelab: Streak starter plates for OP50 and RNAi feeding strains
before Part I (dpy-11, bli-1, unc-22).

I. Streak E. coli to obtain 1 20 min Prelab: Set up student stations.

single colonies 30 min Lab: Streak plates.

15–20 h Postlab: Incubate plates.

II. Grow E. coli overnight 2 15 min Prelab: Aliquot LB and LB/amp.

cultures Set up student stations.

15 min Lab: Prepare overnight cultures.

12–48 h Postlab: Incubate cultures.

III. Seed NGM-lite and NGM- 4 30 min Lab: Seed NGM-lite and NGM-lite/amp + IPTG plates.

lite/amp + IPTG plates  24–36 h Postlab: Incubate plates.a

with E. coli

Stage B: Culturing C. elegans

I. Chunk wild-type C. 6 30 min Prelab: Chunk wild-type worms to OP50-seeded NGM-lite
elegans plates.b

8 20 min Prelab: Set up student stations.

15 min Lab: Chunk worms to OP50-seeded NGM-lite plates.
Incubate for 48 h.

II. Pick individual C. 10 20 min Prelab: Make worm picks.

elegans Set up student stations.

30 min Lab: Pick L4 worms to fresh OP50-seeded NGM-lite plates.

Stage C: Observing Wild-Type and Mutant C. elegansc

I. Observe the C. 12–13 20 min Prelab: Set up student stations.

elegans life cycle 45 min Lab: Study the morphology, behavior, and life cycle of
wild-type worms under a dissecting microscope.

II. Observe C. elegans 9 30 min Prelab: Chunk wild-type and mutant C. elegans strains (rol-6,
mutants bli-1, unc-22, dpy-11) to OP50-seeded NGM-lite 

plates.

Set up student stations.

12–13 45 min Lab: Examine wild-type and mutant worms; identify differ-
ences in development rate, morphology, or movement.

aAfter incubation, seeded plates from Part III of Stage A can be stored in sealed containers for several weeks at 4°C. 
bIf enough plates for each student are available, this extra round of chunking may be skipped. (It is a good idea to prepare extra plates,

because some may become contaminated during preparation or student work.)
cBoth procedures in Stage C require wild-type worms from Parts I or II of Stage B. If you are not completing Parts I or II of Stage C imme-

diately after Stage B, transfer small chunks of wild-type worms to OP50-seeded NGM-lite plates 2 d before completing Stage C.

PLANNING AND PREPARATION

The following table will help you to plan and integrate the different experimental
methods. 
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OVERVIEW OF EXPERIMENTAL METHODS IN STAGE A: CULTURING E. COLI

37°C

I.   STREAK E. COLI TO OBTAIN SINGLE COLONIES

II.   GROW E. COLI OVERNIGHT CULTURES

III.   SEED NGM-LITE AND NGM-LITE/AMP + IPTG PLATES WITH E. COLI

FLAME
loop

COOL
loop

SCRAPE UP
cell mass

FLAME
loop

COOL
loop

STREAK 2 FLAME
loop

COOL
loop

STREAK 3

FLAME
loop

COOL
loop

STREAK 4 INCUBATE
15–20 h

STREAK 1

INCUBATE
24–36 h at room temperature

FLAME
pipette

REMOVE
cap and
flame
tube 
mouth

WITHDRAW
sample

REMOVE
cap and 
flame tube 
mouth

REFLAME
and 
replace
cap

EXPEL
sample

SCRAPE UP
cell mass with 
pipette tip

DROP
tip-first 
into tube

REFLAME
and 
replace
cap

INCUBATE
12–24 h
with 
shaking

REFLAME
and 
replace 
cap

37°C

REMOVE
cap and
flame tube
mouth

FLAME
pipette

REMOVE
cap and
flame 
tube
mouth

WITHDRAW
sample

REFLAME
and 
replace 
cap

DROP
sample on 
center of 
agar
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STAGE A: CULTURING E. COLI

� I. Streak E. coli to Obtain Single Colonies

1. Use a red permanent marker to label the bottom of the LB agar plate with your
group number, the date, and “OP50.” 

2. Hold the inoculating loop like a pencil and sterilize the loop in the Bunsen burn-
er flame until it glows red hot.

3. Remove the lid from the E. coli OP50 culture plate with your free hand. Do not
place the lid on the lab bench; hold the lid face down just above the culture plate
to help to prevent contaminants from falling on the plate or lid.

4. Stab the inoculating loop into a clear area of the E. coli OP50 culture plate sever-
al times to cool it.

5. Use the loop tip to scrape a visible cell mass from a bacterial colony on the E. coli
OP50 culture plate. Do not gouge the agar. Replace the lid on the E. coli OP50 cul-
ture plate.

6. Lift the lid of the new LB agar plate just enough to perform streaking as described
below. The object is to serially dilute the bacteria with each successive streak, so
that individual cells are separated in at least one of the streaks. Do not place the
lid on the lab bench; replace the plate lid after each streak.

i. Streak 1: Glide the loop tip back and forth across the surface of the LB agar to
make a streak across the top quarter of the plate. Avoid gouging the agar. 

ii. Streak 2: Reflame the inoculating loop and cool it by stabbing it into the agar
away from the first (primary) streak. Draw the loop tip through the end of the
primary streak and, without lifting the loop, make a zigzag streak across one
quarter of the agar surface.

iii. Streak 3: Reflame the loop and cool it in the agar. Draw the loop tip once
through the end of the previous streak and make another zigzag streak in the
adjacent quarter.

iv. Streak 4: Reflame the loop and cool it. Draw the tip once through the end of
the previous streak and make a final zigzag streak in the remaining quarter of
the plate.

v. Reflame the loop and allow it to cool before placing it on the lab bench.

7. Label the bottom of three LB/amp plates with your group number, the date, and
the appropriate E. coli RNAi feeding strain (“dpy-11 RNAi,” “bli-1 RNAi,” or “unc-
22 RNAi”).
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REAGENTS, SUPPLIES, & EQUIPMENT

For each group

Bunsen burner
Inoculating loop 
LB agar plate
3 LB + ampicillin <!> (LB/amp) plates
Permanent marker (red)

To share

“Bio bag” or heavy-duty trash bag

Bleach (10%) <!> or disinfectant (e.g., Lysol)
E. coli OP50 culture
E. coli RNAi feeding strain cultures (dpy-11, 

bli-1, and unc-22)
Incubator set at 37°C

See Cautions Appendix for appropriate han-
dling of materials marked with <!>.

CAUTION! When using an
open flame, take appropri-
ate precautions. Make sure
that any loose clothing is
secured and tie long hair
back. Do not lean over the
flame.

Make it a habit to always
flame the loop one last
time.
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8. Follow the procedures outlined in Steps 2–6 to streak each feeding strain onto a
separate LB/amp plate.

9. Place all four plates upside down in a 37°C incubator. Incubate them for 15–20 h,
until optimal growth of well-formed colonies is achieved. At this point, colonies
should range from 0.5 to 3 mm in diameter.

10. Take time for responsible cleanup.

i. Segregate unwanted bacterial cultures into a “bio bag” or heavy-duty trash
bag for proper disposal.

ii. Wipe the lab bench with soapy water and 10% bleach or disinfectant at the
end of the lab.

iii. Wash your hands before leaving the lab.

� II. Grow E. coli Overnight Cultures

Culturing and Observing C. elegans /  557

STREAK 1 STREAK 2FLAME and
cool loop

SCRAPE cell mass
from bacterial 
colony

FLAME and
cool loop

FLAME and
cool loop

STREAK 3 STREAK 4

37°C

Plates are inverted to pre-
vent condensation that
collects on the lids from
falling onto the agar, caus-
ing the colonies to run
together.

REAGENTS, SUPPLIES, & EQUIPMENT

For each group
Bunsen burner
4 Culture tubes (15 mL) (sterile)
E. coli OP50 culture plate from Part I
E. coli RNAi feeding strain cultures (dpy-11,

bli-1, and unc-22) on LB/amp plates 
from Part I

Inoculating loop (optional)
LB/amp broth (10 mL)
LB broth (5 mL)
Micropipette tips (10–100 µL, sterile)

Permanent marker (red)
Pipette aid or bulb
2 Pipettes (5 mL) (sterile)
Test tube rack

To share
“Bio bag” or heavy-duty trash bag
Bleach (10%) <!> or disinfectant (e.g., Lysol)
Shaking water bath or incubator set at 37°C

See Cautions Appendix for appropriate han-
dling of materials marked with <!>.
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1. Use a red permanent marker to label a sterile 15-mL culture tube with your group
number, the date, and “OP50.”

2. Use a 5-mL pipette to sterilely transfer 2 mL of LB broth into the culture tube as
follows:

i. Make sure that the culture tube cap is unscrewed to the “loose” position.

ii. Attach a pipette aid or bulb to a 5-mL pipette. Briefly flame the pipette cylinder.

iii. Remove the cap of the bottle containing LB broth using the little finger of
your hand holding the pipette bulb. Flame the mouth of the LB bottle.

iv. Use the pipette to withdraw 2 mL of LB. Reflame the mouth of the bottle and
replace the cap.

v. Remove the cap of the labeled culture tube from Step 1. Expel the LB into the
tube, reflame, and replace the cap.

3. Use a sterile micropipette tip to scrape a visible cell mass from a selected colony
on your E. coli OP50 culture plate (from Part I) and drop it tip-first into the cul-
ture tube. Reflame and replace the tube cap in the loose position. Alternatively,
use an inoculating loop as follows: 

i. Sterilize the loop in the Bunsen burner flame until it glows red hot. Cool the
loop by stabbing it several times into a clear area near the edge of your E. coli
OP50 culture plate (from Part I).

ii. Use the loop to scrape a visible cell mass from a selected colony on your E. coli
OP50 culture plate. Immerse the cell mass in the LB broth and agitate the
loop to dislodge the cell mass.

iii. Replace the tube cap in the loose position. Reflame the loop before setting it
on the lab bench.

4. Label three sterile 15-mL culture tubes with your group number, the date, and one of
the E. coli RNAi feeding strains (“dpy-11 RNAi,” “bli-1 RNAi,” or “unc-22 RNAi”). 

5. Use a 5-mL pipette to sterilely transfer 2 mL of LB/amp broth into each of the
three labeled culture tubes as described in Step 2.

6. Use a sterile pipette tip (or a flamed and cooled inoculating loop) to transfer a sin-
gle colony of RNAi feeding bacteria from each of the dpy-11, bli-1, and unc-22
LB/amp plates (from Part I) into the appropriate culture tubes as described in
Step 3.

7. Incubate the tubes for 12–24 h in a 37°C shaking water bath (with continuous
shaking) or for 24–48 h in a 37°C incubator (without shaking). To allow air flow,
do not seal the tube lids during incubation.

8. Take time for responsible cleanup.

i. Segregate unwanted bacterial cultures and tubes, pipettes, and micropipette
tips that have come into contact with cultures into a “bio bag” or heavy-duty
trash bag for proper disposal.

ii. Wipe the lab bench with soapy water and 10% bleach or disinfectant at the
end of lab.

iii. Wash your hands before leaving the lab.
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If working in a team, one
partner should handle the
pipette and the other
should handle the tubes
and caps.

Pipette flaming can be elim-
inated if individually
wrapped pipettes are used.

Loop flaming can be elimi-
nated if an individually
wrapped, sterile plastic
loop is used.

37°C
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� III. Seed NGM-Lite and NGM-Lite/Amp + IPTG Plates with E. coli

1. Label the bottom of four NGM-lite plates with your group number and the date
with a black marker. Use a red marker to label the bottom of the plates “OP50.”

2. Use a 5-mL pipette to sterilely seed each of the NGM-lite plates with OP50 as follows:

i. Attach the pipette aid or bulb to the 5-mL pipette. Briefly flame the pipette
cylinder.

ii. Remove the cap from the OP50 overnight culture (from Part II) using the lit-
tle finger of your hand holding the pipette bulb. Flame the mouth of the
OP50 overnight culture.

iii. Use the pipette to withdraw 1 mL of overnight culture. Reflame and replace
cap.

iv. Add one to two drops of overnight culture to the center of the surface of each
NGM-lite plate. The drops should occupy most of the plate surface but should
not touch the edge of the dish.

3. Use a red marker to label the bottom of three NGM-lite/amp + IPTG plates with
your group number, the date, and one of the E. coli RNAi feeding strains (“dpy-
11 RNAi,” “bli-1 RNAi,” or “unc-22 RNAi”).

4. Use a 5-mL pipette to sterilely transfer one to two drops of each feeding strain
overnight culture to the appropriate NGM-lite/amp + IPTG plate as described in
Step 2.

5. Grow the seeded plates face-up for 24–36 h at room temperature.

6. Take time for responsible cleanup.

i. Segregate unwanted bacterial cultures and tubes, pipettes, and micropipette
tips that have come into contact with cultures into a “bio bag” or heavy-duty
trash bag for proper disposal.

ii. Wipe the lab bench with soapy water and 10% bleach or disinfectant.

iii. Wash your hands before leaving the lab.
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REAGENTS, SUPPLIES, & EQUIPMENT

For each group

Bunsen burner
E. coli OP50 overnight culture from Part II
E. coli RNAi feeding strain (dpy-11, bli-1, and

unc-22) overnight cultures from Part II
3 NGM-lite + ampicillin <!> + isopropyl-β-D-

thiogalactopyranoside <!> (NGM-lite/amp
+ IPTG) plates

4 NGM-lite plates
Permanent markers (black and red)

Pipette aid or bulb
4 Pipettes (5 mL)
Test tube rack

To share

“Bio bag” or heavy-duty trash bag
Bleach (10%) <!> or disinfectant (e.g., Lysol)

See Cautions Appendix for appropriate han-
dling of materials marked with <!>.

Seed the plates in a clean
area to avoid contamination.

Avoiding the edges of the
dish ensures that the
worms will remain in the
center of the plate.

The bacterial lawn should
be confluent and dry before
any worms are added.
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OVERVIEW OF EXPERIMENTAL METHODS IN STAGE B: CULTURING C. ELEGANS

       I.  CHUNK WILD-TYPE C. ELEGANS

DIP
implement
in ethanol

OBSERVE
worms

IGNITE
ethanol

CUT
chunk with
worms

PICK UP
chunk 

TRANSFER
chunk to
new plate 

VERIFY
worm
transfer

INCUBATE
48 h at room 
temperature

      II.  PICK INDIVIDUAL C. ELEGANS

FLAME
end of 
pick

VERIFY
worm transfer
and health

ATTACH
glob of
bacteria

PICK
large 
worms

TRANSFER
worms to 
new plate
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STAGE B: CULTURING C. ELEGANS

� I. Chunk Wild-Type C. elegans

1. Obtain a fresh OP50-seeded NGM-lite plate (from Part III of Stage A) and a plate
with wild-type worms.

2. Examine both plates under the dissecting microscope for signs of bacterial or
mold contamination—any growth of a different color or morphology (shape)
from the OP50 lawn. Obtain a new plate if you detect any contamination.

3. Use a black permanent marker to label the bottom of the fresh OP50-seeded
NGM-lite plate with your group number, the date, and “wild type.”

4. Use your dissecting microscope to identify a region of the plate of wild-type
worms that is densely populated with worms and eggs.

5. Sterilize a metal spatula or forceps by dipping the end of the implement into the
beaker of ethanol and then briefly passing it through a Bunsen burner flame to
ignite the ethanol. Allow the ethanol to burn off away from the Bunsen flame; the
implement will become too hot if left in the flame.

6. Use a sterilized spatula or forceps to cut a 1-cm (~3/8-in) square chunk of agar
from the worm- and egg-dense region of the plate identified in Step 4.

7. Carefully remove the piece of agar with worms from the wild-type plate and place
it upside down on the lawn of the fresh OP50-seeded NGM-lite plate.

8. Examine the new plate under the microscope to verify that you have successfully
chunked the worms. Within a few minutes, worms should crawl from the agar
chunk and be visible in the bacterial lawn.

9. Store the new plate lid-side down for ~48 h at room temperature before contin-
uing with Part II of Stage B (or Parts I or II of Stage C). Choose a place where the
plate will not be disturbed.

10. Take time for responsible cleanup.

i. Segregate any bacterial cultures that need to be discarded into a “bio bag” or
heavy-duty trash bag for proper disposal.

ii. Wipe the lab bench with soapy water and 10% bleach or disinfectant.

iii. Wash your hands before leaving the lab.
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REAGENTS, SUPPLIES, & EQUIPMENT

For each group

Binocular dissecting microscope
Bunsen burner
Ethanol (95%) <!> in a 50- or 100-mL beaker
Metal spatula or forceps
OP50-seeded NGM-lite plate from Part III of

Stage A
Permanent marker (black)

Wild-type worms on NGM-lite plate

To share

“Bio bag” or heavy-duty trash bag
Bleach (10%) <!> or disinfectant (e.g., Lysol)

See Cautions Appendix for appropriate han-
dling of materials marked with <!>.

Sterilization prevents cross-
contamination with differ-
ent C. elegans strains and
non-OP50 bacteria.

CAUTION! Be extremely
careful to avoid igniting the
ethanol in the beaker. Do
not panic if the ethanol is
accidentally ignited. Cover
the beaker with a glass
Petri dish lid or other non-
flammable cover to cut off
oxygen and rapidly extin-
guish the fire.

To feed worm strains, it is
easier to transfer a chunk of
worm-filled agar from a
well-grown plate to a new
plate rather than to pick
individual worms.

Placing the agar piece upside
down makes it easier for the
worms to crawl into the new
bacterial food source.
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� II. Pick Individual C. elegans

Repeat this procedure until you can efficiently pick worms to a new plate. Once you
feel accomplished, try to pick several worms at once.

1. Examine the plate of wild-type worms you chunked in Part I under the dissecting
microscope. Confirm that no contaminants have grown since chunking. Obtain a
new plate of worms if necessary.

2. Use a black permanent marker to label the bottom of the fresh OP50-seeded
NGM-lite plate (from Part III of Stage A) with your group number, the date, and
“wild type.”

3. Examine a worm pick. The flattened end of the platinum wire should be bent at
roughly a 45° angle. Adjust the pick with the forceps if necessary. You may need
to adjust your pick from time to time during the course of this exercise.

4. Hold the worm pick like a pencil and sterilize the tip in a Bunsen burner flame
until it glows red hot.

5. Attach a glob of bacteria to the worm pick by wiping the flat head across the lawn
of bacteria on the fresh OP50-seeded NGM-lite plate, as shown to the left. The
bacteria will act like double-stick tape when you pick worms.

6. Open the lid of your plate of worms and identify a large worm.

7. Gently tap the top of the worm with the glob of bacteria on the bottom of the flat-
tened pick. The glob of bacteria will attach the worm to the pick.

8. To transfer the worm, gently wipe the bottom of the pick in the lawn of the fresh
OP50-seeded plate. Make sure to avoid using too much force or you may tear the
agar surface and possibly crush the worm.

9. Examine the new plate under the microscope to confirm that the worm has sur-
vived picking. If it is visibly damaged or fails to move within several minutes,
transfer another worm.

10. For most experiments, it is important to use only one stage of worms. To avoid
later confusion, “burn” any embryos or other smaller larval stages that are acci-
dentally transferred to the new plate by heating the worm pick in a Bunsen burn-
er flame until it glows red hot and then immediately touching the flattened end
to any unwanted worm. (Alternatively, carefully pick each unwanted worm and
flame it in the Bunsen burner.) 

REAGENTS, SUPPLIES, & EQUIPMENT

For each group

Binocular dissecting microscope
Bunsen burner
Forceps
OP50-seeded NGM-lite plate from Part III of

Stage A
Permanent marker (black)
Wild-type worms on NGM-lite plate from 

Part I
Worm pick

To share

“Bio bag” or heavy-duty trash bag
Bleach (10%) <!> or disinfectant (e.g., Lysol)

See Cautions Appendix for appropriate han-
dling of materials marked with <!>.

Bacteria from a plate that
has aged 2–3 wk serve as a
better source of sticky bac-
teria.
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11. Store the plate at room temperature. Choose a place where the plate will not be
disturbed.

12. Take time for responsible cleanup.

i. Segregate any bacterial cultures that need to be discarded into a “bio bag” or
heavy-duty trash bag for proper disposal.

ii. Wipe the lab bench with soapy water and 10% bleach or disinfectant.

iii. Wash your hands before leaving the lab.

STAGE C: OBSERVING WILD-TYPE AND MUTANT C. ELEGANS

� I. Observe the C. elegans Life Cycle

1. Obtain a plate with wild-type worms.

2. Observe the worms under a dissecting microscope. Note any physical (morpho-
logical) differences among the worms.

3. Note any differences in behavior, paying particular attention to how they move on
the plate.

4. Lift the plate several centimeters (~1 in) above the microscope stage and drop it.
Note any changes in worm movement. You may need to tap the plate several times
to induce movement.

5. Study the diagram of the C. elegans life cycle above and attempt to identify an
example of each stage of the worm life cycle on the plate.

i. An adult hermaphrodite is a large worm with embryos inside. (The wild-type
strain used in this experiment produces few if any adult males.)

ii. The embryo is a small, oval object.

Adult

Embryonic 
development (14 h)

L1 larva (~12 h)

L2 larva (~7 h)

L3 larva (~8 h)

L4 larva (~10 h)

REAGENTS, SUPPLIES, & EQUIPMENT

For each group

Binocular dissecting microscope 

Wild-type worms on NGM-lite plate from 
Part I or II of Stage B
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iii. An L1 larva has recently hatched and is the smallest of the four larval stages.

iv. L2 and L3 larvae are larger than L1 worms but not as large as an adult. Examine
worms of different sizes to familiarize yourself with these larval stages.

v. The final juvenile stage, an L4 larva, is almost as large as an adult hermaph-
rodite. The lack of internal embryos is one marker that distinguishes an L4
larva from an adult. A clear, crescent-shaped patch near the center of the
body is another characteristic of an L4 larva. The egg-laying structure, called
the vulva, will develop in this patch when the L4 molts into an adult.

� II. Observe C. elegans Mutants

1. Obtain plates with mutant and wild-type worms. 

2. Observe the worms under a dissecting microscope. Note any physical (morpho-
logical) differences among the wild-type and mutant worms. Record your obser-
vations and make sketches as needed.

3. Note any differences in behavior, paying particular attention to how the wild-type
and mutant worms move on the plate. Gently tap the plates on the microscope stage
to induce movement. Record your observations and make sketches as needed.

RESULTS AND DISCUSSION

1. How many stages of C. elegans development were you able to identify? Describe
each stage.

2. Why is it necessary for C. elegans to pass through several larval stages and how is
this type of development different from humans?

3. How does a hermaphrodite produce offspring without mating?

4. What physical (morphological) differences did you observe in the mutant
worms? What differences in behavior or movement did you notice? Did your
classmates identify the same characteristics of the mutant C. elegans?

5. Based on each mutant phenotype that you observed, what do you think would be
the function of the protein produced by the wild-type gene?

6. The mutant bli-1 and dpy-11 strains contain mutations that affect the cuticle, the
outer layer of the worm that is secreted by the epidermal (skin) cells. These two
very different phenotypes show how the nature of the mutation in a strain (the
genotype) affects the phenotype.

i. bli-1 encodes a collagen. What is a collagen? How can mutations in a collagen
affect the cuticle?

ii. dpy-11 encodes an enzyme. What do enzymes do? How can mutations in
enzymes affect the cuticle?

REAGENTS, SUPPLIES, & EQUIPMENT

For each group

Binocular dissecting microscope
Mutant worms on NGM-lite plates (dpy-11, 

rol-6, bli-1, and unc-22)

Wild-type worms on NGM-lite plate from 
Part I or II of Stage B

All RNAi experiments in
subsequent labs begin
with identifying L4 her-
maphrodites, so it is im-
portant to become profi-
cient at identifying them.
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Detecting a transposon in Arabidopsis lab. See
Transposon detection in Arabidopsis

Detecting a transposon in corn lab. See
Transposon detection in corn

Detecting epigenetic DNA methylation in
Arabidopsis lab. See Epigenetic
DNA methylation detection in
Arabidopsis

Detecting genetically modified foods by PCR
lab. See Genetically modified foods
detection by PCR

Determining the transposon content in grass-
es lab. See Transposon content in
grasses

De Vries, Hugo, 3
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Dicer and Slicer identification, 527–529, 531,
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Arabidopsis
about, 447–449
answers to questions, 505–510
bioinformatics methods

identify the FWA amino acid sequence
and function, 460–461

using BLAST to find DNA sequences
in databases, 457–459

using Map Viewer to determine the
chromosome location of the FWA
gene, 459–460

experimental methods
amplifying DNA by PCR, 455–456
analyzing PCR products by gel elec-

trophoresis, 456–457
digesting DNA with McrBC, 454–455
isolating DNA, 453–454
overview, 451
plant Arabidopsis seeds, 452

further reading, 449
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planning and preparation instructions,
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450
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475–484
results and discussion, 461–462

ERO (Eugenics Record Office), 163, 170
Estabrook, Arthur, 164, 165p, 169
Ethanol, 356
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Eugenics

discrediting of, 169–171
Mendelian genetics and, 162–165
social engineering and, 166–168

Eugenics Record Office (ERO), 163, 170
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Eugenics: The Science of Human Improvement
by Better Breeding (Davenport), 163

Eukaryotes diversity comparison
about, 81–82
aligning and comparing the human and

chimpanzee adh1 gene sequences,
85

aligning and comparing the maize and
teosinte adh1 gene sequences, 85

aligning and comparing two maize adh1
gene sequences, 84–85

answers to questions, 140–142
extending the analysis of adh1 gene

sequences, 85
further reading, 82
planning and preparation instructions,

113–124
planning and preparation overview, 83
Sequence Server project setup, 84

Eukaryotic core promoter, 23–24
European Union (EU), 351
Evans, Martin, 516
Evolution

bitter-taste ability demonstration lab (see
Bitter-taste ability investigation)

climate change and population bottle-
necks, 199–200

concept of a human population and,
202–203

DNA molecular clock, 193
ethnicity and, 203–204
evidence of recent selection in the

genome, 205–208
fossil records and, 192–193
genetic diversity and population bottle-

necks, 199–202
genetic legacies of Neandertal and

Denisovan, 195–199
human metabolism adaptations, 204–205
information obtainable from DNA,

194–195
mitochondrial DNA polymorphisms lab

(see Mitochondrial DNA polymor-
phisms)

natural selection as explained by Darwin, 2
spread of agriculture and, 208–210

Exons and introns, 24–27
Exonucleases, 547
“Experiments in Plant Hybridization”

(Mendel), 2, 8
Eyeless gene, 518

F
Fearon, Eric, 187
Fedoroff, Nina, 336
Ferris, James, 545
Fertile Crescent, 313
FGenesH, 52–53, 119
Fiers, Walter, 34
Finger Prints (Galton), 176
Fire, Andy, 525, 526, 527

Fischer, Eugen, 171
“Fitter Family” contests, 163
FlavrSavr tomato, 523–524
Fly. See Drosophila melanogaster (fruit fly)
Fodor, Steven, 45
Fogarty, John E., 311
Fomivirsen (Vitravene), 524
Food and Agriculture Organization, UN, 352
Ford Foundation, 346
Forensic DNA fingerprinting, 176, 178–190
Fossil records and evolution, 192–193
454 Life Sciences, 39, 41
FOXP2 transcription factor, 198
Fraley, Robert, 349
Franklin, Rosalind, 10
Fromm, Michael, 349, 350
Fuller, Dorian, 318

G
GAI (Arabidopsis Gibberellin-Insensitive) gene,

346
GAI (gibberellic acid insensitive). See

Identifying GAI gene family mem-
bers in plants

Galton, Francis, 162, 176
Garrod, Archibald, 172, 173p
Gasohol, 356
GBrowse, 120
Gehring, Walter, 514, 515, 518
Gene Boy, 108–109, 118
GeneChip, 45, 46
Gene targeting, 515
Genetically modified (GM) food

detecting GM foods lab (see Genetically
modified foods detection by PCR)

development of enriched rice and corn,
353–356

FlavrSavr tomato, 523–524
Green Revolution and, 345–347, 348
plants and, 348–351

Genetically modified foods detection by PCR
about, 411–412
answers to questions, 499–501
bioinformatics methods

using BLAST to find DNA sequences
in databases, 419–421

using BLAST to identify transgenes
driven by the 35S promoter,
421–422

experimental methods
amplifying DNA by PCR, 417–418
analyzing PCR products by gel elec-

trophoresis, 418–419
isolating DNA from soybean and food

product, 415–417
overview, 414
plant soybean seeds, 415

further reading, 412
objectives, 411
planning and preparation instructions,

463–474

planning and preparation overview, 413
recipes for reagents and stock solutions,

475–484
results and discussion, 422–424

Genetic code
automated DNA sequencing, 34–37
chromosome detection techniques lab (see

Chromosome detection using
bioinformatics)

codons and, 12–14
dideoxy DNA sequencing, 33–34
DNA directionality, 19
DNA microarrays, 44–45
eukaryotes diversity comparison lab (see

Eukaryotes diversity comparison)
exons and introns, 24–27
finding genes in genomic sequence, 27–29
gene annotation, 29–32
gene annotation lab (see Annotating

genomic DNA)
genome assembly strategies, 41–44
heredity and, 3–4, 11–14
identifying members of a gene family lab

(see Identifying GAI gene family
members in plants)

minimal and synthetic genomes, 46–48
next-generation DNA sequencing, 37–41
patterns in DNA sequences, 15–18
pseudogene function lab (see Pseudogene

function)
reading frames, 19–21
RNA code translation into amino acids,

11–12
RNA splicing mechanism, 26f
3′- and 5′-untranslated regions and pro-

moters
protein-binding sites, 21
sequence elements in the core promot-

er, 23–24
transcription and translation, 22

transposons investigations (see
Transposon content in grasses;
Transposon detection in
Arabidopsis; Transposon detection
in corn)

Genetic code labs planning and preparation
about, 113–114
Apollo annotation editor, 114–115
BLAST sequence search tool, 123
Clustal W and muscle sequence alignment

tools, 122
CoGe comparative genomics tool, 116
DNA Subway, 116–118
Gene Boy, 118
gene prediction tools, 119
genome browsers Map Viewer and

GBrowse, 120
InterProScan, 120
Jalview multiple sequence alignment and

phylogenetic tree editor, 120–121
Phylip phylogenetic tree tool, 121
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RepeatMasker, 121–122
Sequence Server, 123
TARGeT, 123
TargetScan, 123–124
tRNAscan-SE, 124

Genetics and Evolution (Morgan), 170
GENEWIZ DNA sequencing services,

277–281
Genome Analyzer, 40
Genome as information
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