Website Search
ID 485

GABA Neurotransmitter

Description:
GABA occurs in 30-40% of all synapses-only glutamate is more widely distributed. Neurons in every region of the brain use GABA to fine-tune neurotransmission. Increasing GABA at the neuronal synapse inhibits the generation of the action potential of the neuron, thereby making it less likely to excite nearby neurons. A single neuron may have thousands of other neurons synapsing onto it. Some of these release activating (or depolarizing) neurotransmitters; others release inhibitory (or hyperpolarizing) neurotransmitters. GABA is the primary inhibitory neurotransmitter, which means it decreases the neuron's action potential. When the action potential drops below a certain level, known as the threshold potential, the neuron will not generate action potentials and thus not excite nearby neurons. The nucleus of a neuron is located in the cell body. Extending out from the cell body are dendrites and axons. Dendrites conduct impulses toward the cell body, Axons conducting impulses away from the cell body. A recording electrode has been attached to a voltmeter to record the charge across the cell membrane, the thin layer that controls movement in and out of the neuron. The resting potential in excitable neurons is usually around -65 to -70 millivolts (mV), which can be seen on the voltmeter. Excitatory synapses reduce the membrane potential: The synapses labeled A, B, and C are excitatory (e.g. glutamate ACH). These synapses release activating neurotransmitters, which reduce the resting potential of the neuron. If the voltage reaches the threshold potential, typically around -50 mv, an action potential is generated, which will travel down the axon, where it will communicate with a nearby cell. The strength of the stimuli that produce an action potential is important only insomuch as it reaches threshold potential. The resultant action potential is always the same, whether it was created by relatively strong or relatively weak stimuli. action potential is a constant. Decreasing the action potential: GABA is the primary inhibitory neurotransmitter, which means it decreases the neuron’s action potential. When the action potential drops below the threshold potential, the neuron will not excite nearby neurons. Exitatory PostSynaptic Potential (EPSP): The Exitatory PostSynaptic Potential (EPSP) of a single excitatory synapse is not sufficient to reach the threshold of the neuron. Rather, when a number of EPSPs are created in quick succession, their charges sum together. It is the combined sum of these EPSPs that creates an action potential Activation of inhibitory synapses such as GABA, on the other hand, makes resting potential more negative. This hyperpolarization is called an inhibitory postsynaptic potential (IPSP). Activation of inhibitory synapses (D and E) makes the resting potential of the neuron more negative. The resulting IPSP may also prevent what would otherwise have been effective EPSPs from triggering an action potential. It is the total summation of the EPSPs and IPSPs that determines whether a neuron’s charge is sufficient to cross the potential threshold.
Transcript:
GABA occurs in 30-40% of all synapses-only glutamate is more widely distributed. Neurons in every region of the brain use GABA to fine-tune neurotransmission. Increasing GABA at the neuronal synapse inhibits the generation of the action potential of the neuron, thereby making it less likely to excite nearby neurons. A single neuron may have thousands of other neurons synapsing onto it. Some of these release activating (or depolarizing) neurotransmitters; others release inhibitory (or hyperpolarizing) neurotransmitters. GABA is the primary inhibitory neurotransmitter, which means it decreases the neuron's action potential. When the action potential drops below a certain level, known as the threshold potential, the neuron will not generate action potentials and thus not excite nearby neurons. The nucleus of a neuron is located in the cell body. Extending out from the cell body are dendrites and axons. Dendrites conduct impulses toward the cell body, Axons conducting impulses away from the cell body. A recording electrode has been attached to a voltmeter to record the charge across the cell membrane, the thin layer that controls movement in and out of the neuron. The resting potential in excitable neurons is usually around -65 to -70 millivolts (mV), which can be seen on the voltmeter. Excitatory synapses reduce the membrane potential: The synapses labeled A, B, and C are excitatory (e.g. glutamate ACH). These synapses release activating neurotransmitters, which reduce the resting potential of the neuron. If the voltage reaches the threshold potential, typically around -50 mv, an action potential is generated, which will travel down the axon, where it will communicate with a nearby cell. The strength of the stimuli that produce an action potential is important only insomuch as it reaches threshold potential. The resultant action potential is always the same, whether it was created by relatively strong or relatively weak stimuli. action potential is a constant. Decreasing the action potential: GABA is the primary inhibitory neurotransmitter, which means it decreases the neuron’s action potential. When the action potential drops below the threshold potential, the neuron will not excite nearby neurons. Exitatory PostSynaptic Potential (EPSP): The Exitatory PostSynaptic Potential (EPSP) of a single excitatory synapse is not sufficient to reach the threshold of the neuron. Rather, when a number of EPSPs are created in quick succession, their charges sum together. It is the combined sum of these EPSPs that creates an action potential Activation of inhibitory synapses such as GABA, on the other hand, makes resting potential more negative. This hyperpolarization is called an inhibitory postsynaptic potential (IPSP). Activation of inhibitory synapses (D and E) makes the resting potential of the neuron more negative. The resulting IPSP may also prevent what would otherwise have been effective EPSPs from triggering an action potential. It is the total summation of the EPSPs and IPSPs that determines whether a neuron’s charge is sufficient to cross the potential threshold.
Keywords:
GABA, Gamma-aminobutyric acid, glutamate, neurotransmitter, dendrite, axon, neuron, excitatory, inhibitory, action potential
Creative Commons License This work by Cold Spring Harbor Laboratory is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Related content:

1151. GABA (Gamma-aminobutyric Acid)
Professor Trevor Robbins describes the GABA (or GABAergic) system, whose main function in the brain is inhibition.
916. GABRB3 Gene
GABA is the main inhibitory neurotransmitter in the adult brain. GABRA3 is a candidate gene for autism.
1439. Biochemicals - Excitation and Inhibition
Doctor Josh Dubnau explains that the genes active in different neurons can make them excitatory (e.g. glutamate) or inhibitory (e.g. GABA). These neurotransmitters are critical to learning.
1444. Neurons
Unlike other organs, the brain has evolved to adapt to the environment. This unique ability is driven by communication between many billions of neurons.
811. The Glutamate System
Professor Trevor Robbins describes some of the key functions of the excitatory glutamate system, which is integral to information processing and long-term potentiation.
2239. Language
An overview of language-related content on Genes to Cognition Online.
1975. Autism
An overview of autism-related content on Genes to Cognition Online.
549. Long-term Potentiation
Long-term Potentiation of synaptic transmission is commonly referred to as LTP. It can be recorded in many parts of the nervous system, but is very widely studied in the hippocampus.
1211. What is NMDA?
Professor Seth Grant explains that NMDA is an amino acid derivative very similar to glutamate - the brain's primary excitatory neurotransmitter.
837. Addiction as Overlearning
The idea that drug addiction is a result of 'learning gone wild' was bolstered by several reports.
Cold Spring Harbor Laboratory
CSHL HomeAbout CSHLResearchEducationNews & FeaturesCampus & Public EventsCareersGiving